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ABSTRACT

Accurate quantification of water use efficiency

(WUE) and characterization of its variability across

multiple time scales can help to initiate appropriate

management measures for cropland ecosystems in

response to natural and anthropogenic changes.

This study is aimed to understand the diurnal and

seasonal patterns in WUE and its dominant controls

in the citrus orchards of central India. We used

eddy covariance measurements to estimate the

evapotranspiration (ET) and gross primary product

(GPP) fluxes from two crop cycles (2016 and 2017).

On a daily scale, ET and GPP exhibited similar

patterns, with peaks occurring during the fruit

development stage. The daily WUE ranged from

0.22 to 3.39 g C kg-1 H2O with a mean of

1.77 g C kg-1 H2O. We observed high intersea-

sonal variability in WUE, which emphasized the

need to partition the fluxes between the growth

stages. Landsat images were then acquired to

characterize the spatiotemporal variability in WUE

at the regional scale. Satellite-derived ET, GP and

WUE (= GPP/ET) estimates were consistent with

ground-based measurements (R2 > 0.80, n = 16).

Eight biophysical indices derived from Landsat

were then regressed with WUE estimates to see

whether these indices, either independently or in

combination, can explain the WUE dynamics in

citrus orchards. Our results indicated that the en-

hanced vegetation index and soil-adjusted vegeta-

tion index are strongly related to WUE with

correlation strengths greater than 0.75 at all growth

stages. We then developed the constitutive rela-

tions between WUE and biophysical indices that

could be utilized by water managers to improve

crop water productivity in response to changing

agro-climatic conditions.
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HIGHLIGHTS

� Water use efficiency fluxes were estimated for

citrus orchards in central India using eddy

covariance and Landsat

� Diurnal and seasonal patterns of ET, GPP, and

WUE fluxes were analyzed for citrus orchards

� Role of climatic variables on ET, GPP, and WUE

fluxes was investigated at ecosystem scale

� Formulated the relations between ecosystem

WUE and biophysical spectral indices for use

with management practices

INTRODUCTION

The exchange of carbon and water fluxes between

vegetation and the atmosphere plays a crucial role

in the metabolism of terrestrial ecosystems (Yu and

others 2008; Ito and Inatomi 2012). These ex-

changes are linked through a key ecosystem char-

acteristic called water use efficiency (WUE), which

is the ratio between carbon uptake (a proxy for

photosynthesis) and the accompanying water loss

(a proxy for consumptive use) (Ponton and others

2006; Niu and others 2011; Song and others 2017).

WUE is an indispensable eco-hydrologic trait that is

used to evaluate the impact of climate change,

drought, deficit irrigation, and management

strategies on ecosystem productivity (Tang and

others 2015b). In agronomy, WUE can be used

interchangeably with crop water productivity

(CWP), which is a measure of crop yield per unit of

water consumed (Fan and others 2012). Sustain-

able agricultural practices are aimed at improving

WUE or CWP by evaluating alternative manage-

ment strategies to suit local agro-climatic condi-

tions (Dar and others 2017). These improvements

require a critical understanding of the yield re-

sponses to available resources and farming practices

during crop growth stages (Tang and others 2015a;

Qin and others 2016).

Ecosystem water use efficiency (WUEE) is the

ratio between gross primary productivity (GPP) and

evapotranspiration (ET) in a relatively homoge-

neous terrestrial system (Law and others 2002;

Reichstein and others 2007; Brümmer and others

2012). WUEE can analyze the responses of ecosys-

tem carbon and water balances to climate change,

extreme weather conditions, and water manage-

ment practices (Kuglitsch and others 2008; Niu and

others 2011). WUEE fluxes can be combined with

satellite-based remote sensing data to characterize

land surface exchanges at regional to global scales

(Zhao and others 2007; Jung and others 2010; Tang

and others 2013, 2015a). WUEE can be accurately

estimated using micrometeorological techniques

such as the eddy covariance (EC) method, which

considers the estimation of stomatal (photosyn-

thesis and transpiration) and nonstomatal ex-

changes (respiration and evaporation) from a

relatively homogeneous ecosystem (Dong and

others 2011; Wagle and Kakani 2012). The EC

method accurately quantifies the net exchange of

heat, mass, and momentum fluxes between the

surface and atmosphere by estimating the covari-

ance of turbulent fluctuations between vertical

wind (known as eddies) and the flux of interest

(water vapor, CO2, temperature, and so on). The

size and shape of the flux footprint vary with

measurement height, plant physical characteristics,

and atmospheric stability conditions (Osmond and

others 2004; Wu and others 2010). Despite its high

accuracy, the estimation of WUEE via the EC

method suffers from two major shortcomings: (1) it

demands expensive instrumentation for monitor-

ing carbon and water fluxes at high frequency, and

(2) it provides WUE estimates at the field scale,

which is limited by the flux footprint (Ahong-

shangbam and others 2016).

As a cost-effective measure, satellite images

along with climate data can be utilized to estimate

the WUE fluxes at regional to global scales with

reasonable accuracy, provided proper calibration at

the flux tower is ensured (Xiao and others 2004b).

The effectiveness of satellite-based ET and GPP (and

hence, WUE) estimates are primarily controlled by

(1) image features (such as spatial, spectral, and

temporal resolutions), and (2) the method of

determining the fluxes (such as energy balance,

temperature-greenness, light use efficiency, spec-

tral indicators). Moderate resolution imaging

spectroradiometer (MODIS) provides direct esti-

mates of ET and GPP at 1-km resolution averaged

over an 8-day period (Zhang and others 2015).

MODIS-derived GPP estimates are reliable over

forest ecosystems (Xiao and others 2004a, b; Turner

and others 2006; Wu and others 2010) in com-

parison with those over managed cropland

ecosystems (Turner and others 2005; Heinsch and

others 2006; Zhao and others 2007; Gitelson and

others 2008). One of the several reasons for the

poor performance of MODIS in cropland ecosys-

tems is the high spatial discrepancy between the

data products (� 106 m2) and cropped fields (a few

hundreds of m2). A potential alternative to MODIS

is the Landsat enhanced thematic mapper (Land-

sat—ETM+), which offers a multispectral image in

8 spectral bands at 30 m spatial resolution with a
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16-day revisit interval. Landsat products can

quantify the eco-physiological differences between

and among the crop species, thereby reducing the

uncertainties in GPP estimates (Gitelson and others

2008). A number of studies have proven the effi-

cacy of integrated flux tower—satellite datasets in

the quantification of ET (Gonzalez-Dugo and oth-

ers 2009; Zhang and others 2009), GPP (Li and

others 2007; Wu and others 2010; Madugundu and

others 2017), and WUE (Tang and others 2015a;

Zhang and others 2015) over a wide range of

ecosystems. Although a few biophysical indices

derived from satellite imagery (such as EVI, NDVI,

and LSWI) play significant roles in regional GPP

estimates, their dependency on WUEE remains

unclear (Wang and others 2010; Madugundu and

others 2017). The establishment of constitutive

relations and the development of correlation matri-

ces between WUEE and satellite-derived spectral

indices can aid in evaluating alternative manage-

ment scenarios for improved crop productivity.

Previous studies on characterizing WUE from

citrus orchards were limited to the application of

water balance techniques in conjunction with

monitoring plant-based indicators. For example,

Tejero and others (2011) and Consoli and others

(2014) analyzed the role of deficit irrigation (DI)

strategies in the WUE dynamics for citrus orchards

using a number of crop physiological features. They

concluded that the practice of DI strategies during

flowering and fruit growth stages could have a

detrimental effect on yield and fruit quality. Roc-

cuzzo and others (2014) reported that instanta-

neous WUE from young orange trees could be

strongly correlated with water pressure deficits.

Qin and others (2016) studied the WUE dynamics

in a citrus orchard through a meta-analysis using

1009 observations from 11 major citrus-producing

countries and reported that the average WUE var-

ied from 2.5 to 5 kg m-3. WUE was observed to

vary with the cultivation method, crop age, soil

type, climatic conditions, and water and nitrogen

inputs. Panigrahi and Srivastava (2017) conducted

a field study on Nagpur mandarin oranges in India

and observed the WUE dynamics to vary between

1.57 and 3.90 kg m-3 for various irrigation and

fertilizer treatments. All of these studies were lim-

ited to field-scale applications and hence cannot

explain the spatiotemporal variability in WUE at

the regional scale caused by differences in water

management practices. There is a need for addi-

tional studies that consider spatial (regional) and

temporal (diurnal and seasonal) variability in WUE

for an accurate understanding of the WUE fluxes in

fruit crops.

To address this knowledge gap, we employ novel

methods by combining EC flux measurements and

high-resolution satellite data. The objectives of this

study include: (1) analyze daily and seasonal pat-

terns of WUEE using eddy covariance measure-

ments and quantify relationships to environmental

variables, (2) estimate WUE by using METRIC and

VPM models together with Landsat imagery, and

evaluate with EC measurements, (3) assess spa-

tiotemporal patterns in Landsat-derived WUE, and

(4) evaluate Landsat-derived spectral indices as

estimates of WUE. We adopted the mapping

evapotranspiration at high resolution with inter-

nalized calibration (METRIC) and vegetation pho-

tosynthesis model (VPM) algorithms to generate

spatiotemporal datasets of ET and GPP (and hence,

WUE) fluxes across the region. Eight spectrally

derived biophysical and environmental indices

were considered to ascertain their dominance in

explaining the variability in WUE so that effective

management practices can be readily implemented

to improve crop production.

MATERIALS AND METHODS

Site Description

This study was conducted in a 30-ha citrus orchard

(latitudes: 21�25¢30.7¢¢ to 21�26¢2.4¢¢E, longitudes:
78�9¢30.2¢¢ to 78�10¢5.6¢¢N, elevation: 392 m asl)

located in Goregaon village of Maharashtra, India

(Figure 1). The study area forms part of the Vi-

darbha region in central India, which is the leading

producer of mandarin oranges accounting for 40%

of the country’s production. The crop yield of Vi-

darbha oranges (6.0 tons/ha) is far less than the

nation’s average (9.23 tons/ha); thus, the need for

practicing efficient management practices is high

(Peddinti and others 2018). As per the Köppen and

Geiger climate classification, the region has a

tropical savanna climate characterized by high

temperatures and dry winter months (Kottek and

others 2006). The mean annual precipitation of the

region is approximately 950 mm, with humidity

ranging from 35% in summer to 73% in the

monsoon season. The study area is situated on the

Deccan trap geologic system, which is characterized

by multiple layers of solidified flood basalt resulting

from volcanic eruptions. Orange trees at the

experimental site had an age of 8 years, an average

height of 3 m and were planted at a spacing of 5 m.

The water requirements of the citrus trees are

generally met through the flood system during

flowering and early growth stages (for ease with

fertilizer application) and through the drip system
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during the late growth stage (due to limited re-

sources). Irrigation scheduling is performed at 15-

to 20-day intervals with an average depth of 25–

35 mm. Farmers in the region intentionally water

stress the crops during the pre-flowering stage to

initiate blooming. The crop cycle of mandarin or-

anges in the study area lasts for nine months,

starting from March (flowering) to November

(harvest).

Flux Data Collection and Processing

The EC flux system is composed of a 3D sonic

anemometer and an open-path fast response in-

frared gas analyzer (IRGASON-EB-IC, Campbell

Sci. Inc., USA) to measure CO2 and H2O fluxes at a

height of 5 m. Raw data were collected with a

logger (CR1000, Campbell Sci. Inc., USA) at 10 Hz

frequency and averaged over half-hour intervals

for use with computations. Additionally, slow re-

sponse meteorological variables, including precipi-

tation (TE525-L-PTL, Tipping Bucket, Campbell Sci.

Inc., USA), soil heat flux (HFP01SC-L-PT-L,

Campbell Sci. Inc., USA), solar radiation (CNR 4,

Campbell Sci. Inc., USA), soil moisture (CS616-L-

PT-L, Campbell Sci. Inc., USA), and photosynthet-

ically active radiation (LI-190R, LI-COR Inc., USA)

were obtained at 30-min intervals. The flux tower

is surrounded by a homogeneous canopy cover

with similar treatment conditions (for at least

100 m in the prevailing wind direction); hence, the

measured fluxes were considered representative of

the entire study area.

Primary data processing was performed on half-

hour mean fluxes for the period from 13 March

2016 through 25 December 2017 using Eddypro

post-processing software (Version 6.2.0, LI-COR,

USA). A number of standard flux corrections,

including (a) removal of bad data, (b) tilt correc-

tions on sonic measurements, (c) frequency re-

sponse corrections, and (d) Webb–Pearman–

Leuning (WPL) corrections, were applied on fast

response measurements. The corrected fluxes

exhibited spikes due to unrealistic meteorological

measurements, leading to the application of sec-

ondary corrections to remove spurious data and fill

the gaps with reasonable estimates. We used the

REddyproc package developed in the open-source

‘R’ environment along with the MATLAB script to

perform secondary data processing that includes:

(a) flux spike removal, (b) removal of negative

nighttime CO2 fluxes, (c) friction velocity correc-

tion, and (d) gap filling and uncertainty analysis.

See Rodda and others (2016) for a detailed

description of the flux calculations and corrections.

The corrected water vapor fluxes were correlated

with vertical wind velocities to obtain actual ET

from the orange fields. The corrected CO2 fluxes

were portioned into GPP and respiration by

regressing reliable nighttime data with air temper-

ature following the Lloyd and Taylor (1994) model.

GPP was estimated as the difference between net

ecosystem exchange (NEE) and ecosystem respira-

tion (Re). Finally, EC-derived ecosystem water use

efficiency (WUEEC) was estimated at half-hour

intervals using the relation

Figure 1. Typical distribution of citrus orchards in central India. The rectangular domain around the flux tower

corresponds to the sub-region used for regional WUE estimation from Landsat imagery (inset: wind rose diagram). Right:

flux tower installed within the study area.
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WUEEC ¼ GPP

ET
ð1Þ

Landsat Data Acquisition

Advances in satellite remote sensing can provide a

synoptic estimation of ecosystem fluxes over large

areas with high spatial and temporal resolutions

(Zhao and Running 2009; Madugundu and others

2017). The use of ETM+ sensor data from Landsat

can minimize the uncertainties associated with

carbon and water flux estimates and characterize

WUE in the spatiotemporal domain to implement

field-level management strategies (Gitelson and

others 2012). Cloud-free Landsat 7 and/or 8 images

encompassing the study area (path: 145, row: 045)

were downloaded from the US Geological Survey

(USGS) through the Earth Explorer site (http://ea

rthexplorer.usgs.gov). The acquired images have

eight spectral bands with a spatial resolution of

30 m (bands 1–7, 9), a 15-m panchromatic band

(band 8), and two thermal bands with a spatial

resolution of 100 m. Of the eleven bands, six

bands, namely blue (B: 0.45–0.51 lm), green (G:

0.53–0.59 lm), red (R: 0.64–0.67 lm), near-in-

frared (NIR: 0.85–0.88 lm), shortwave infrared 1

(SWIR1: 1.57–1.65 lm), and shortwave infrared 2

(SWIR2: 2.11–2.29 lm), were used to develop

biophysical indices and estimate ecosystem fluxes.

A total of 16 cloud-free Landsat images, with five

from the flowering stage, seven from the growth

stage, and four from the harvest stage were used to

estimate the WUE fluxes at regional scale following

proper validation. The unavailability of satellite

imagery during monsoon period due to high cloud

cover has been restricted the number of images

used in this study. The satellite overpass dates

corresponding to the acquired images include DOY

103, and 135 in 2016 and 073, 089, and 121 in

2017 (specific to flowering), DOY 153, 199, 271,

and 287 in 2016 and 153, 169, and 297 in 2017

(specific to growth), and DOY 295 and 311 in 2016

and 313 and 345 in 2017 (specific to harvest).

ET Estimation Using the METRIC
Algorithm

We adopted a satellite-based METRIC algorithm

coded in the open-source ‘R’ environment (Olme-

do and others 2016) to estimate ET as a residual of

energy balance at the Earth’s surface, given by

LE ¼ Rn � G� H ð2Þ

where LE is latent heat flux consumed for ET

(Wm-2), Rn is net radiation at the surface (Wm-2),

G is the soil heat flux conducted into the ground

(Wm-2), and H is sensible heat flux convected to

the air (Wm-2). A brief description of the METRIC

algorithm used to estimate ET is discussed herein.

See Allen and others (2007) for detailed method-

ology and calculations.

Rn is estimated as the difference between

incoming and outgoing radiant fluxes, including

solar and thermal radiations, at the time of satellite

overpass. G is estimated as a fraction of Rn using an

empirical relation that considers surface tempera-

ture (Ts), NDVI, and albedo (Bastiaanssen 2000).

The sensible heat flux (H) is estimated using the

aerodynamic function at the ground surface, which

is given by

H ¼ qairCp
dT

rah
ð3Þ

where qair is the air density (kg m-3), Cp is the

specific heat of air at constant pressure (J kg-1 K-1),

dT (= Ts - Ta) is the near-surface temperature dif-

ference (K), and rah is the aerodynamic resistance

(s m-1). dT is then linearly regressed with Ts, given

by

dT ¼ aþ bTs ð4Þ

The coefficients a and b were empirically

determined by computing dT at the two anchor

pixels (cold and hot pixels) of the image. ET

estimates from cold (well-watered vegetation) and

hot (bare soil) pixels were set to minimum and

maximum values of LE to estimate H at the ex-

treme pixel locations. The ET algorithm also uses

the meteorological data at the flux tower to

internally calibrate the energy balance at the an-

chor pixels.

GPP Estimation Using the VPM
Algorithm

Satellite products predominantly use light use

efficiency (LUE)-based methodologies to extrapo-

late and scale-up site-specific GPP measurements

(Prince and Goward 1996; Running and others

2000; Xiao and others 2004a). The GPP estimate

from LUE models is given by

GPP ¼ eg � FPAR � PAR ð5Þ

where �g is LUE (g C MJ-1), PAR is the incident

photosynthetically active radiation (M Jm-2), and

FPAR is the fraction of PAR absorbed by the vege-

tation canopy (-). Xiao and others (2004a) found

that FPAR can be partitioned into (a) photosyn-

thetic vegetation containing leaf chlorophyll

(FPARPAV) and b) non-photosynthetic vegetation
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containing senescent foliage, branches, and stems

(FPARNPV). Replacing FPAR with FPARPAV in

Eq. (5) can significantly improve GPP estimates

over a wide range of ecosystems with green cover

(Li and others 2007; Gitelson and others 2008;

Wang and others 2010; Wu and others 2010; Ma-

dugundu and others 2017). In this study, we

adopted the VPM model proposed by Xiao and

others (2004a) to estimate GPP from Landsat data,

which is given by

GPP ¼ eg � FPARPAV � PAR ð6Þ

A number of researchers have used satellite-de-

rived vegetation indices as a surrogate for FPARPAV

when estimating GPP. Commonly used indices in-

clude NDVI (Prince and Goward 1996; Madugundu

and others 2017), GCI (Gitelson and others 2008),

EVI (Li and others 2007; Jiang and others 2008)

and LAI (Ruimy and others 1995). Of these, EVI-

based FPARPAV estimates are highly reliable for

cropland ecosystems (Liu and others 2014) and

hence used in this study. We estimated FPARPAV

during the active vegetation period as a linear

function of EVI, with the coefficient P set to 1.0 to

minimize the parameterization (Xiao and others

2004a, b; Zhang and others 2016).

FPARPAR ¼/ �EVI ð7Þ

Light use efficiency (�g) is estimated as a linear

function of maximum LUE (�0) and downregulated

factors of temperature (Tscalar), soil water content

(Wscalar), and leaf phenology (Pscalar) on photosyn-

thesis activity (Xiao and others 2004a, b; Madu-

gundu and others 2017).

eg ¼ e0 � Tscalar �Wscalar � Pscalar ð8Þ

The effect of temperature on photosynthesis

(Tscalar) is estimated for each time step using the

equation developed by Raich and others (1991).

Tscalar ¼
T � Tminð Þ T � Tmaxð Þ

T � Tminð Þ T � Tmaxð Þ½ � � T � Topt
� �2 ð9Þ

where Tmin, Tmax, and Topt are the minimum,

maximum, and optimum temperatures for photo-

synthetic activity, respectively. For citrus orchards

of the region, these values were obtained from flux

tower data and set to 12�C, 42�C, and 28�C. The
effect of soil water on plant photosynthesis (Wscalar)

is estimated using the satellite-derived land surface

water index (LSWI).

Wscalar ¼
1þ LSWI

1þ LSWImax
ð10Þ

where LSWImax is the maximum LSWI across the

growing season of a citrus crop for individual pixels

based on the analysis of LSWI seasonal dynamics

(Xiao and others 2004a, 2005). Since the citrus

trees of the region have a green canopy throughout

the season, the effect of leaf age on photosynthesis

was considered to be maximum by setting Pscalar to

unity.

Maximum light use efficiency (�0) was estimated

by fitting a nonlinear function between net

ecosystem exchange (NEE) and incident PAR at the

flux tower during the peak of the plant growing

season (Yan and others 2009; Wang and others

2010; Madugundu and others 2017) and is given as

NEE ¼ e0 � PAR � GPPmax

e0 � PAR þ GPPmax
� Re ð11Þ

where GPPmax is the maximum GPP estimated on a

given day obtained from the EC system, and Re is

the ecosystem respiration.

Water Use Efficiency from Landsat
Imagery

Pixel-to-pixel algebraic operations were performed

on Landsat-derived GPP and ET products to esti-

mate WUE following Eq. (1). This process also en-

abled us to understand the spatial patterns in WUE

in response to field-level resource availability and

management operations. The efficacy of using

Landsat imagery to capture the WUE dynamics at

the flux tower was evaluated using residual statis-

tical parameters. The temporal WUE patterns were

then analyzed to comment on intra- and intersea-

sonal fluctuations.

Spectral Indices from Landsat Imagery

As ET (from METRIC), GPP (from VPM), and hence

WUE estimations are computationally exhaustive

and demand a large number of parameters, we

tried to identify the biophysical spectral indices

with the greatest influence that could explain the

WUE variations for different growth stages. Eight

spectral indices derived from Landsat imagery were

considered to investigate their ability to explain the

WUEE dynamics and constitute functional rela-

tions. This evaluation can aid in estimating WUEE

directly from the dominant indices so that efficient

management activities in response to dynamic

changes in WUE can be readily implemented. For

each image, site-specific pixels corresponding to a

rectangular domain of 3.6 km2 (20 9 20 pixels)

with the flux tower at the center were extracted

(Kalfas and others 2011; Souza and others 2014;
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Danelichen and others 2015; Kang and others

2016; Madugundu and others 2017). The spectral

indices used in this study include the following:

1. Normalized difference vegetation index

(NDVI)—a measure of vegetation productivity

of terrestrial ecosystems, given by Rouse and

others (1973)

NDVI ¼ qnir � qred
qnir þ qred

ð12Þ

2. Enhanced vegetation index (EVI)—a measure of

vegetation productivity adjusted for residual

atmospheric correction, soil and canopy back-

ground reflectance, given by Huete and others

(1997)

EVI ¼ 2:5
qnir � qred

qnir þ 6qred � 7:5qblueð Þ þ 1½ �

� �
ð13Þ

3. Soil-adjusted vegetation index (SAVI)—a mea-

sure of vegetation productivity that minimizes

the influence from soil brightness, given by

Huete (1988)

SAVI ¼ 1þ Lð Þ qnir � qredð Þ
qnir þ qred þ Lð Þ ð14Þ

where ‘L’ is the canopy background adjustment

factor, which varies from 0 (no vegetation) to 1

(full vegetation). A value of 0.5 for L is considered

in this study.

4. Green-NDVI (GNDVI)—a measure of vegetation

productivity considering chlorophyll concentra-

tion, given by Gitelson and others (1996)

GNDVI ¼
qnir � qgreen
qnir þ qgreen

ð15Þ

5. Green chlorophyll index (GCI)—a measure of

vegetation productivity considering leaf area

index, given by Gitelson and others (2003)

GCI ¼ qnir
qgreen

� 1 ð16Þ

6. Simple ratio (SR)—a measure of high vegetation

productivity with reduction in atmosphere and

topography effects, given by Jordan (1969)

SR ¼ qnir
qred

ð17Þ

7. Specific leaf area vegetation index (SLAVI)—a

measure of leaf canopy linked with plant eco-

physiology and leaf biochemistry, given by

Lymburner and others (2000)

SLAVI ¼ qnir
qred þ qswir2

ð18Þ

8. Land surface water index (LSWI)—a measure of

liquid water in vegetation canopies, given by

Xiao and others (2004b)

LSWI ¼ qnir � qswir1

qnir � qswir1

ð19Þ

where the notation qX stands for the spectral re-

flectance in band ‘X’.

RESULTS

Environmental Conditions

The temporal patterns of all climatic variables dis-

played similar trends between the crop cycles

(Figure 2). The maximum, minimum, and mean

daily values of air temperature, VPD, and solar

radiation during the monitoring period were ob-

served to be 47�C, 11.5�C, and 26.5�C; 6, 0.46, and
2.36 kPa; and 854, 54, and 223 Wm-2, respec-

tively. Air temperature and solar radiation peaked

in May and gradually decreased thereafter (Fig-

ure 2A, C). Starting from the onset of the monsoon

season (June), VPD decreased drastically due to the

increases in precipitation and humidity. Total pre-

cipitation of 300 mm (and 570 mm) was recorded

during the monsoon of 2016 (and 2017), which is

approximately 63% (and 29%) less than the mean

monsoon rainfall for the study region (Figure 2D).

Soil moisture was low during flowering to the early

fruit development stage (March-June) but gradu-

ally increased in the fruit growth and ripening

stages (July-October), with an average value of

0.39 cm3 cm-3, which is slightly less than the field

capacity and represents a condition favorable for

citrus fruit growth (Figure 2E). The relative

humidity was high in the months of July and Au-

gust, with maximum values of 60% in 2016 and

80% in 2017 (Figure 2F). The LAI gradually in-

creased from an average of 2.4 m2 m-2 at the

flowering stage to an average of 5.6 m2 m-2 at the

ripening stage.

Seasonal Variations in ET, GPP,
and WUE

GPP and ET exhibited similar patterns starting with

low water consumption (1.98 ± 0.98 mm m-2

day-1) and production rates (2.55 ± 1.9 g C m-2

day-1) during the flowering and early growth

stages (March-June), with an increase to a peak

during the fruit development and ripening stages

(3.26 ± 1.84 mm m-2 day-1 and 6.14 ± 3.91 g C

m-2 day-1), followed by a decreasing trend during

the harvest stage (2.56 ± 0.74 mm m-2 day-1 and
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4.86 ± 0.80 g C m-2 day-1) (Figure 3A, B). Simi-

larly, WUE was low during the flowering stage

(1.46 ± 1.51 g C kg-1 H2O) and peaked during the

fruit development stage (2.49 ± 1.09 g C kg-1

H2O), followed by a slight reduction during the

harvest stage (2.01 ± 0.62 g C kg-1 H2O) (Fig-

ure 3C). To divulge the role of climate variables on

atmospheric carbon and water fluxes, we regressed

the monthly mean ET and GPP fluxes with various

environmental factors (Figure 4). At the monthly

scale, both ET and GPP were fitted linearly with

relative humidity, whereas the fit with other

parameters was nonlinear. The monthly averaged

ET and GPP fluxes exhibited distinct nonlinear

trends with solar radiation, air temperature, soil

moisture, and VPD (Figure 4). This finding reveals

that seasonal variability in major climate variables

drives photosynthesis and transpiration rates with

varying strengths (Yu and others 2008; Tong and

others 2014a; Liu and others 2017). Similarly, the

role of climate variables on the coupled carbon-

water fluxes (that is, WUE) was evaluated by lin-

early regressing WUE with environmental factors

(Figure 5). WUE is positively correlated with soil

water content and precipitation, whereas WUE is

negatively correlated with VPD, solar radiation, and

air temperature.

Diurnal WUE Fluxes in Citrus Orchards

To understand the plant photosynthesis and tran-

spiration responses to rapid changes in meteoro-

logical parameters, we analyzed the diurnal

variations in WUE during the crop cycle. The

diurnal trends in WUE were identical between the

crop stages with two peaks, one occurring in the

morning (1.85 ± 0.64 g C kg-1 H2O) and the other

in the evening (1.76 ± 1.36 g C kg-1 H2O) with a

low steady-state WUE in between (0.87 ± 0.17 g C

kg-1 H2O) (Figure 6). The diurnal patterns in WUE

among the growth stages indicate that the highest

magnitude and amplitude (maximum minus min-

imum) in WUE were observed during the post-

harvesting followed by the fruit development

Figure 2. Seasonal variations of monthly means of A air temperature, B vapor pressure deficit, C solar radiation, D

precipitation, E soil water content, and F relative humidity observed at the flux tower during the citrus crop cycles of 2016

and 2017
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stages. During early morning hours of the day

(06:00–08:00 am), a sharp increase in solar radia-

tion (0–62 Wm-2) augments stomatal conduc-

tance, resulting in increased photosynthesis and

WUE. As the time of the day progresses, a decrease

in GPP due to stomatal closure combined with an

increase in ET due to increased VPD (10–26 kPa)

results in low WUE fluxes. Just before the sunset, a

reduction in solar radiation and air temperature

results in a sharp decrease in ET, which is much

higher than the increase in GPP, resulting in in-

creased WUE. The diurnal courses of WUE in the

citrus orchards of the study region are in agreement

with those in the managed croplands of similar

agro-climatic zones (Tong and others 2009, 2014a).

Landsat Evaluation of ET, GPP, and WUE
Fluxes

The Landsat-derived fluxes for the pixel containing

the flux tower location were validated with EC

measurements for the days of satellite overpass

(Figure 7). This comparison is meaningful because

the flux footprint is completely contained by the

image boundary, satisfying the condition of

homogeneity. Good correlations between the EC-

measured and Landsat-derived ET (R2 = 0.84), GPP

(R2 = 0.82), and WUE fluxes (R2 = 0.82) were re-

ported, confirming the effectiveness of Landsat-

based estimation methodologies to characterize the

spatiotemporal variability in ET, GPP, and hence

WUE fluxes at the regional scale.

Spatial Distribution of WUE Fluxes

Following validation with EC flux data, Landsat

imagery was utilized to upscale EC flux measure-

ments and characterize spatial variability in WUE

fluxes (Figure 8). Farmers of the region practice

different irrigation and management strategies, to

attain the trade-off between the amount of irriga-

tion water supplied and crop production. Hence,

spatial variability in WUE is obvious during the

crop cycle. Spatial variability in WUE is low during

Figure 3. Seasonal variations of daily A evapotranspiration (ET), B gross primary product (GPP), and C water use

efficiency (WUE) derived from flux tower measurements. Landsat-derived fluxes for the dates of satellite overpass at the

pixel containing the flux tower were represented using dots (Æ) for ease with the comparison (crop stages considered

include: flowering: April–June, growth: July–October, and harvest: November–December).
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the pre-flowering stage, as almost all farmers in-

tend to water stress the crop to initiate blooming.

During the flowering and early growth stages

(DOY < 140), uniform fertilizer application with

flood irrigation resulted in a fairly homogeneous

distribution of WUE across the region

(0.94 ± 0.02 g C kg-1 H2O). Spatial anomalies in

WUE were observed during the crop development

stage, as the frequency and amount of irrigation

during this period are governed by the availability

of resources. Large spatial variability during harvest

(DOY > 270) could be attributed to a large num-

ber of fragmented lands, wherein the farmers’

intuition played a significant role in selecting the

harvesting method and date specific to the farm.

The northern and southeastern regions of the study

area (Figure 8) consistently recorded high WUE

due to the availability of resources to cope with the

water stress conditions.

WUE Variability with Spectral Indices

We considered eight biophysical spectral indices

(that is, NDVI, EVI, SAVI, GNDVI, GCI, SR, SLAVI,

and LSWI) that can be readily derived from Landsat

spectral reflectance data to determine whether

these indices can explain the WUE dynamics. All

the indices exhibited a positive correlation with

WUE fluxes during the flowering, development,

and harvesting stages (Figure 9). The WUE values

Figure 4. Relationship of monthly mean gross primary productivity (GPP) and evapotranspiration (ET) with monthly

means of A vapor pressure deficit, B soil water content, C solar radiation, D relative humidity, E air temperature, and F

monthly cumulative precipitation for the citrus orchards. All calendar months are represented using crop growth stages

with ‘F’ indicating flowering stage, ‘G’ indicting fruit development or growth stage, and ‘H’ indicating harvesting stage of

the citrus crop cycle.
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ranged from 0.62 to 2.8 g C kg-1H2O during the

flowering stage, 0.65–4.2 g C kg-1H2O during the

development stage, and 0.73–4.1 g C kg-1H2O

during the harvesting stage (Figure 9). During the

crop cycle, the EVI values ranged from 0.1 to 0.6,

the NDVI values ranged from 0.2 to 0.79, the GCI

values ranged from 1 to 6.8, the LSWI values ran-

ged from - 0.5 to 0.45, the GNDVI values ranged

from 0.25 to 0.75, the SAVI values ranged from 0.1

to 0.65, the SLAVI values ranged from 0.5 to 3.8,

and the SR values ranged from 2 to 12. These in-

dices exhibited different correlation strengths with

WUE at different crop stages (Figure 8). Of these,

two indices, EVI and SAVI showed strong linear

dependency with the WUE fluxes at all growth

stages with R2 > 0.75 (Table 1).

DISCUSSION

Impact of Environmental Variables
on GPP, ET, and WUE

We observed strong negative correlations between

VPD and ET and between VPD and GPP, which

disagrees with the results of previous studies (Liu

and others 2014, 2017; Tong and others 2014a).

However, the asynchronous response of these

fluxes resulted in a decreasing trend in WUE with

an increase in VPD, concurring with previous

studies specific to cropland ecosystems in a tropical

savannah climate (Figure 5). This result could be

due to the different vegetation phenology and

management activities being practiced by the

farmers in the region, which demand less irrigation

Figure 5. Relationship of monthly mean ecosystem water use efficiency (WUE) with monthly means of A vapor pressure

deficit, B soil water content, C solar radiation, D relative humidity, E air temperature and F monthly cumulative

precipitation for the citrus orchards. All calendar months are represented using crop growth stages with ‘F’ indicating

flowering stage, ‘G’ indicting fruit development or growth stage, and ‘H’ indicating harvesting stage of the citrus crop cycle.
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water during summer months. During the winter

(pre-flowering) season, farmers in the region con-

sciously water stress the orange trees to initiate

blooming. This stress results in reduced water up-

take, thus decreasing ET. Low GPP during the pre-

flowering stage can be attributed to the dormant

Figure 6. Diurnal variations in water used efficiency (WUE) during different growth stages of the citrus crop (crop stages

considered include: flowering: April–June, growth: July–October, and harvest: November–December).

Figure 7. Scatter plots of ET, GPP, and WUE fluxes derived from the EC measurements and Landsat estimates (at the pixel

containing flux tower) for different growth stages. A strong positive correlation between the two datasets (R2 > 0.80)

confirms the efficiency of Landsat in estimating ET, GPP, and WUE fluxes at the regional scale (crop stages considered

include: flowering: April–June, growth: July–October, and harvest: November–December).

522 S. R. Peddinti and others



www.manaraa.com

stage of the crop resulting from short and cool days.

During the summer (flowering) months, low pre-

cipitation combined with high air temperature and

VPD resulted in a short-term drought situation. As

a result, both carbon assimilation and plant growth

were suppressed under combined environment and

water stress conditions. Although favorable climate

conditions exist during the early growth stage

(May-June), insufficient irrigation, and low soil

moisture resulted in reduced ET and GPP fluxes

(Figure 4). Precipitation paired with soil moisture

and radiation caused GPP to be much higher than

ET during the fruit development and ripening

stages (June-October), leading to an increase in

WUE. This result could be due to the decrease in

stomatal conductance under high temperature and

radiation conditions, which prevented transpira-

tion from becoming much higher than the photo-

synthesis rate. Meteorological and biophysical

parameters strongly influence WUEE due to their

effects on energy partitioning and canopy conduc-

tance.

The monthly GPP and ET fluxes strongly agreed

with the relative humidity and precipitation pat-

terns, particularly during the early fruit growth

stage (July–August). The air temperature-to-GPP

Figure 8. Spatial distribution of Landsat-derived WUE fluxes for the dates of satellite overpass during 2016 (top) and 2017

(bottom). The model domain has an area of 3.6 km2 (20 9 20 pixels) with flux tower located at the center.
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correlation was observed to be weaker than the

VPD-to-ET correlation during the crop cycle.

Monthly ecosystem WUE is positively correlated

with soil water content and precipitation (Fig-

ure 5B, D, F) and negatively correlated with VPD,

solar radiation, and air temperature (Figure 5A, C,

E). These findings were consistent with the results

of other studies performed under temperate climate

conditions (Tong and others 2009, 2014b). More

than 70% of the variations in the ET, GPP, and

WUE fluxes were explained by the seasonal vari-

ability in solar radiation, soil moisture, VPD,

humidity and precipitation at P < 0.01 (data not

shown).

The WUE values from the different crop growth

stages (1.46–3.49 g C kg-1 H2O) were consistent

with those observed in other studies conducted in

this region by Panigrahi and Srivastava (2017) as

well as the results of a global meta-analysis of citrus

water use and yields conducted by Qin and others

(2016). Since the studies on WUE fluxes in citrus

orchards are limited, we further compared our

findings with other crops that use similar tech-

niques. Abraha and others (2016) reported the

ecosystem WUE values for annual corn (4.1 g C

kg-1H2O) and perennial grassland (2.3 g C kg-1

H2O) in a humid temperate climate. Additionally,

Hamilton and others (2015) and Zeri and others

(2013) noted that perennial crops exhibit low wa-

ter use compared to annual crops such as maize

(corn) and citrus, which is in agreement with the

current findings. Peddinti and Kambhammettu

(2019) developed region-specific single and dual

crop coefficients for this study area for use with

field-scale precision irrigation and management

practices. The ET and WUE results from this study

can be useful for implementing field-scale irrigation

and management practices on a regional scale.

Figure 9. Relationship of Landsat-derived WUE fluxes with various biophysical spectral indices applicable to flowering

(WUE_F), growth (WUE_G), and harvest (WUE_H) stages (crop stages considered include: flowering: April–June, growth:

July–October, and harvest: November–December).
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Spectral Dominance of WUE Fluxes

The biophysical spectral indices based on visible,

near-infrared, and far-infrared bands of the elec-

tromagnetic spectrum are generally associated with

plant health status and water stress conditions.

Many studies (Jackson 1986; Jackson and others

2004; Zúñiga and others 2016) have suggested that

the crop water status and irrigation practices can be

estimated purely based on spectral indices such as

NDVI and NDWI. During the flowering stage, al-

most all indices except LSWI were able to explain

the WUE dynamics (Figure 9). During the growth

stage, all indices performed better, while during the

harvest stage, EVI and SAVI were able to capture

the WUE dynamics (Table 1). This result confirms

that the indices that use the normalized difference

of reflectance in red and near-infrared bands can

perform better in explaining the WUE dynamics

than simple ratio-based or difference-based indices.

Overall, Landsat-retrieved EVI and SAVI can be

considered as the best surrogates to explain the

spatiotemporal dynamics in WUE for citrus orch-

ards of central India. We observed low NDVI during

the flowering stage, which can be attributed to the

decreased canopy fraction resulting from conscious

water stress (Zúñiga and others 2016). In addition,

a high bare land fraction during this period might

have decreased the NDVI.

CONCLUSION

Accurate and synoptic quantification of ecosystem

WUE is indispensable to implement efficient man-

agement strategies in response to natural and

anthropogenic stresses. In this study, we present a

methodology to reveal the diurnal and seasonal

patterns of WUE by combining tower-based (eddy

covariance) and satellite-based (Landsat) mea-

surements. Application of the proposed methodol-

ogy was tested for the citrus orchards of central

India using two crop cycle data. During the crop

cycle, environmental conditions were observed to

influence the photosynthesis and transpiration

processes with varying strengths resulting in tem-

poral variations in WUE. Landsat-derived ET (from

METRIC), GPP (from VPM), and WUE (GPP/ET)

fluxes were observed to be consistent with the EC

flux measurements (R2 > 0.80). We concluded

that remote sensing-based carbon and water flux

estimation methods can be utilized to upscale the

ecosystem fluxes in citrus orchards for character-

izing regional WUE variability. Our results con-

clude that EVI and SAVI had higher correlation

strengths (R2 > 0.75) with WUE at all growth
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stages. We then proposed site-specific empirical

relations (between WUE and dominant spectral

indices) that can be utilized to evaluate irrigation

management practices in response to changing

agro-climatic conditions.
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